
README.md 2025-08-01

1 / 5

Introduction and Overview

The crime surveillance system provides functionality that keeps the city safe.

In the system, users can report and view crimes, police patrols can register, view, and update crimes, and

police dispatchers can view patrol status and dispatch police patrols to crime reports.

Requirements

Design the backend such that:

a large user base can report crime information and reports will persist

patrol state should be updated fast and in real-time for timely surveillance network purposes

user authentication is required for core functionality on crime status reporting and patrol dispatch

each network activity should be logged for compliance and security reasons.

System Architecture

The backend service is designed such that it is composed of multiple microservices as shown below.

CaddyService will route HTTPS/REST requests to BrokerService and microservices will mostly communicate

with each other using gRPC.

Patrol service will update location with Redis in real-time and update PostgreSQL patrol information with

lower frequency.

Rationale

README.md 2025-08-01

2 / 5

Microservices architecture increases independent deployability, scalability, and isolation of failures.

The usage of PostgreSQL is used for persistence of authentication data for better account and role

management.

The usage of Redis is used for performance-critical patrol systems, where patrol state has a relatively

limited user base but high-frequency updates and potential real-time streaming applications.

The communication between microservices uses gRPC for more robustness, lower latency, and smaller

payloads than JSON/HTTP between microservices.

Data Design

PostgreSQL

Redis

crime_status

NEW
ASSIGNED
RESOLVED

patrol_status

AVAILABLE
BUSY

users

id : UUID [PK]
username : string «UNIQUE»
password_hash : string
role : string
created_at : timestamp
updated_at : timestamp
last_login : timestamp
last_activity : timestamp
status: crime_status

patrol_profile

user_id : UUID [PK, FK]
officer_id: string «UNIQUE»
officer_name : string
street : string
city : string
state : string
latitude : double
longitude : double
created_at : timestamp
updated_at : timestamp

crime

id : UUID [PK]
reporter_id : UUID [FK]
patrol_id : UUID [FK]
description : string
street : string
city : string
state : string
latitude : double
longitude : double
reported_at : timestamp
created_at : timestamp
updated_at : timestamp

event_log

id : UUID [PK]
user_id : UUID [FK]
service: string
message: JSONB
created_at: datetime

Location

key = user:{id}:location
value = street, city, state, latitude, longtitude, timestamp
TTL = 30 seconds

has_profile

1

0..1

reports

1

0..*

User Interface Design

README.md 2025-08-01

3 / 5

Citizen

Patrol

Dispatcher

Admin

Report crime

View crime

Assign patrol to crime

Update patrol status

Update crime status

View patrol status

View logs

Create citizen

Change roles

API

API Reference

See full OpenAPI spec: openapi.yaml

Crime Management Endpoints

Method Path Description Auth Required

GET /crimes List all crime reports No

POST /crimes Submit a new crime report Yes

PUT /crimes/{id} Update and overwrite crime status Yes

PATCH /crimes/{id} Partially update crime status Yes

DELETE /crimes/{id} Delete a crime by ID Yes

Patrol Management Endpoints

Method Path Description Auth Required

GET /patrols/register List all patrols and their status Yes

POST /patrols/register Register a new police patrol Yes

GET /patrols/{id} Get specific patrol information Yes

file:///Users/jamesguan/crime-surveillance/api/openapi.yaml

README.md 2025-08-01

4 / 5

Method Path Description Auth Required

PUT /patrols/{id} Update patrol info (full update) Yes

PATCH /patrols/{id} Update patrol info (partial update) Yes

PUT /patrols/{id}/status Update patrol status only Yes

PUT /patrols/{id}/location Update patrol location only Yes

Dispatch Endpoints

Method Path Description Auth Required

POST /dispatch Assign patrol to an existing crime Yes

Authentication Endpoints

Method Path Description Auth Required

POST /users/register Register new user Yes

POST /users/login User login No

PATCH /admin/users/{id}/role Admin change user role Yes

Data Models

Crime Status Values

NEW: Initial crime report

ASSIGNED: Patrol has been assigned

RESOLVED: Crime has been resolved

Patrol Status Values

AVAILABLE: Patrol is available for assignment

BUSY: Patrol is currently responding to a call

OFF_DUTY: Patrol is off duty

User Roles

CITIZEN: Regular citizen who can report crimes

PATROL: Police patrol officer

DISPATCHER: Police dispatcher who can assign patrols

ADMIN: System administrator

Location Object

{
 "street": "string",

README.md 2025-08-01

5 / 5

 "city": "string",
 "state": "string",
 "latitude": "number",
 "longitude": "number"
}

Authentication

The API uses JWT Bearer token authentication for protected endpoints. Include the token in the

Authorization header:

Authorization: Bearer <your-jwt-token>

Error Responses

401 Unauthorized: Invalid or missing credentials

404 Not Found: Resource not found

Assumptions

Users are trusted not to abuse the API (No RateLimit implemented in V1)

Assume there is no duplicated crime report for each actual incidence

Users are assumed to report valid crimes

PostgreSQL, Redis, MongoDB are deployed internally (V1)

Only patrols can update crime state

Street, City, State are assumed to be obtained from external server with latitude and longitude

Patrols are assumed to keep pushing location updates in real-time

Roles CITIZEN, PATROL, DISPATCHER, and ADMIN are modeled exclusively such that no one can be

both roles at the same time (but easy to modify)

